(| all Buildings with SQL

Cn

T

P ner e nm
» 4 srYERCE) 4
¢ L . - we wd me g

. "-

| b =, ". f;'
rrn?»& wi"f"'l"'i‘l?}"" : Wl% - H‘ .1 f' - _‘:;.'u‘

el & S Lo o W, -, vy U R R e e -ulumm
- ‘g !- S Q@
. FRERS T ‘ ‘m:g 31‘; G"’ - v E—— . 3 < shmng 'hx--nri)

A
o b Sl

—

Outline

(JCore optimization Guidelines

» Explain plan vs Execution plan
JGetting the plan

» Reading the plan

dindexes

» HINTSs

(JdCommon Table Expressions (CTEs)
» Exadata

e ione
Page 2 of 55 Q_——
Commit to Engineering... Great Lakes Oracle Conference

Who is Ric?

* Oracle Ace .
: : : ione
e Using Oracle since version 5 —_—

e Currently Sr. DBA at Zione Solutions Commit to Engineering...
* Prior experience:
— Started way back at Ford Motor Credit
 Developerin Forms 2.3
 DBA (Versions 5, 6, and 7)
— Worked for Oracle for 10 years

* Core DBA Senior Principal instructor

* Education Manger, central region
e ATS Technical Manger, north central region

— Director of Education at Hotsos . -
Page 3 of 55 @w GLUC

Commit to Engineering...

SQL Optimization Guidelines

* Let the numbers lead you to where the problem is.

e The goal for query optimization is to reduce the time
it takes for a query to finish.

* What helps one query may not help (and even hurt)
another query.

* Never assume anything. Without run time stats you
are just guessing as to what a problem might be.

* Make sure the query is doing only what it needs to do
for the business question being asked.

@=_ @36LOC

Commit to Engin.

Basics of SQL Optimization

* Finding why a SQL statement is slow can be easy.
— Find the section of the plan taking up the most time.
« Fixing the issue may not be so easy.
— Make that section "go away" (Don't do it).
— Find a way to do that faster.
« Other times a rewrite is needed.
— Tune the question, not the query.
— The plan might look "OK", but is it doing more then it needs to?
— You always know something the optimizer doesn't.

©=_ @6L0C

Commit to Engineering...

The Plan

« |t's all about the plan, the execution plan.
* The explain plan is a "guess".
* The execution plan is what really happened.

« To optimize SQL you need the execution
plan with stats.

« With this you know where the problem is.

©=_ @6L0C

Commit to Engineering...

Finding what is slow

* Use SQL Monitor

— Best way to see the execution plan

— All the detalls you need

— Requires the Diagnostics and Tuning packs
 Use DBMS XPLAN.DISPLAY CURSOR

— Works quite well

— Gives you the core details you need

— No required packs to use

e ione
Page 7 of 55

Commit to Engineering...

E6L0C

SQL Monitor

e Use the plan statistic tab to lead you to the problem
* These are the columns most useful to lead you to an issue
* Do not use COST as a tuning metric

Operation | Name Line ID | Estimated Rows Actual Rows | Activity % Timeline(813s) Executions
SQL Developer:
Operation 4 | Object Name Line | Plan Rows | Actual Rows Timeling Activity % Executions

@=_ @36LOC

Commit to Engineering...

Columns of interest

/
e OPERATION — What happened g

e NAME - Who it happened to

e LINE ID - Lineinthe plan, has nothing to do with the statement lines

e ESTIMATED/PLAN ROWS — How many rows were guessed to come back
e ACTUAL ROWS —How many rows really did come back

e ACTIVITY % —How much of the over all active did this step account for
e TIMELINE — Time this step was active

e EXECUTIONS — How many times did this step fire off

@=_ @36LOC

Commit to Engin

SQL Developer — SQL Monitor

PLAN STATISTICS | PLAN | METRICS
Operation Line Object Name |Executions|Plan Rows| Actual Rows Timeline Az tivity %
¥ SELECT STATEMENT 0 1 1
¥ SORT (AGGREGATE) 1 1 1 1
TABLE ACCESS (STORAGE FULL) 2 AFTSE1 1 305 5825
¥ HASH JOIN (RIGHT SEMI) 3 1 485K ses I
INDEX (STORAGE FAST FULL SCAN) 4 IOT_PK 1 82K 82K :
¥ HASH JOIN 5 1 243K .]
¥ JOIN FILTER (CREATE) & :BFOD0D 1 42 43 :
TABLE ACCESS (STORAGE FULL) 7 ALLUSERS_TAB 1 43 43 ‘
¥ JOIN FILTER (USE) 8 BFODD0 1 1718K seo I
TABLE ACCESS {STORAGE FULL) 9 BIG_TAB 1 1718K 2 G

This query was run on a 21c Autonomous Cloud Database, the tables are small.

It took about 4 seconds of run time over all, the database time was 55ms.
Page 10 of 55 Clearly not much to work on for this query on this machine. Qlone - GLDC

SILLY.S QL Commit to Engineering...

SQL Developer — SQL Monitor

PLAN STATISTICS | PLAN | METRICS =

Operation Line Object Name Access Predicates Fitter Predicates
¥ SELECT STATEMENT 0
¥ SORT (AGGREGATE) 1
TABLE ACCESS (STORAGE FULL) 2 AFTSBt "DATA_OBJECT_ID" ISNOT NULL ("DATA_OBJECT_ID" ISNOT NULLAN..

w

¥ HASH JOIN (RIGHT SEMI) “T"."USERNAME"="BT"."OWNER"

INDEX (STORAGE FAST FULL SCAN) 4 OT_PK
¥ HASH JOIN 5 "BT" "OWNER"="AT"."USERNAME"
¥ JOINFILTER (CREATE) & BF0000
TABLE ACCESS (STORAGE FULL) 7 ALLUSERS TAB "AT" "USER_ID"<1000 "AT" "USER_ID'<1000
¥ JOIN FILTER (USE) 8 -BFO00D
TABLE ACCESS (STORAGE FULL) 2 BIG_TAB ("OBJECT_TYPE'=SYNONYM AND SY.. ("OBJECT_TYPE'=SYNONYM AND S..

* From this screen, use the predicates to map steps back to the SQL Statement.
* Since was run on an Exadata machine, notice that many of the predicates are both

ACCESS and FILTER. More on this later.) [
Page 11 of 55 @w GLUC

Commit to Engineering...

DBMS XPLAN.DISPLAY CURSOR

It is a "manual” thing
 To get actuate timing information either:
* Use /*+ gather plan statistics*/
* Set statistics level t0 ALL (session or system)
* Generally best to let the SQL run to completion then get the plan
* Doesn't show parallel plans very well
 DBMS XPLAN can be use several ways, this is just one

* Note: SQL Developer has this functionality via Autotrace

S @=_ @36LOC

Commit to Engin

DBMS XPLAN: A simple example

SQL> SELECT PLAN TABLE OUTPUT
2 FROM TABLE (DBMS XPLAN.DISPLAY CURSOR
3 ('3431u08g6anmy',0, 'ALLSTATS LAST'));
PLAN TABLE OUTPUT

SELECT ename FROM emp

Plan hash value: 3956160932

| 0 | SELECT STATEMENT | | | | 14 |00:00:00.01 |
1 | TABLE ACCESS FULL| EMP | | 14 | 14 |00:00:00.01 |

S @=_ @36LOC

Commit to Engineering...

DBMS XPLAN: You will need to do some math

* These columns are not cumulative:
* Starts, A-Rows, E-Rows
* These columns are cumulative:
e A-Time, Buffers (LIOs), Reads (PIOs)

* For cumulative columns the value includes the
direct children

@=_ @36LOC

Commit to Engin

Doing the math

Id	Operation	Name	Starts	E-Rows	A-Rows	A-Time	Buffers
0	SELECT STATEMENT		1		16000	00:00:00.91	49818
* 1			1	15769	16000	00:00:00.91	49818
2	INDEX FAST FULL SCAN	THIS IDX	1	500	500	00:00:00.01	6
3	TABLE ACCESS FULL	THAT TAB	1	2898K	2898K	00:00:00.61	49812

e The A-Time for the HASH JOIN stepis.29(91-61-1=29)
e The Buffers (LIOs) for the HASH JOIN stepis 0 (49,818 - 49,812 -6 =0)

@=_ 636L0C

Commit to Engineering...

Omeraien s =T st s s | Ay aruda 1 Eosies

Now what?

* This execution plan has over _
600 lines n
* Look for lines with:
— High activity : -
— Long time consumption __ —
* Attack those lines - :-:_
— Map back to the query - =
— Use the predicates
* Isthe step necessary? =
* |Isthere another way to do

:agea:; of 55 ane - G Loc

Commit to Engin

Reading the Plan

* The order of execution and of completion are not the same

* The plan executes from top down, but completes "inside out"

* A parent step starts first but can't complete until it's children do
* This plan completes in this ID order: 2,4,5,3,1,0

OPERATION OBJECT NAME OPTIONS|ID
=@ SELECT STATEMENT 0
=P HASH JOIN
= Access Predicates
é L. 1,JOB_ID=E.JOB_ID
----- [TABLE ACCESS J0BS FULL 2 _
E+ g HasH 101N 3
= Access Predicates
f - E.DEPARTMENT_ID=D.,DEPARTMENT _ID
----- -] TABLE ACCESS ~ DEPARTMENTS ~ FULL 4

----- |8 TABLE ACCESS EMPLOYEES FULL
Page 17 of 55 @ Other XML '°"e

Commit to Engmeermg

i

What to look for in a plan

* Look for big time consumers

— This step or set of steps will be your main focus

— It might not be "this" step that is the source of the problem
* Watch the cardinality (estimated vs actual rows)

— Fix where it goes wrong

— Over or under estimates can cause a plan to go rouge

— Generally speaking, everything after that step is questionable
* Observe the execution counts

— A set of lines that execute over and over is likely a problem

— Note: the inner part of a NESTED LOOPS and a SORT MERGE join always

executes multiple times. . 2
Page 18 of 55 @ﬂ @ GLDC

Commit to Engineering...

Index scans

e This is an alternative to a full table scan
* An index returns the ROWID for a given row

* With the ROWID the optimizer can go directly to the block
containing the row

* This is quite fast when retrieving a relatively small amount of rows
from a table

— There really isn't a fixed amount or precent when this is
"always" best

An index can be scanned without going to the table
— Called a "fat" or "covering" indexes

S @=_ @36LOC

Commit to Engin

Indexes

* For the normal B-Tree index best to have a multi-column index
— When using a B-Tree index you will only get to use one per table
— Find an index with a set of commonly used columns
— ldeally create one multi-column index to support many queries
* For Bit Map indexes typically better to have several single column indexes
— The optimizer can put these together in using either an AND or OR

operation -~
ST
@=_ 36LOC

Commit to Engin

— This gives flexibility in data warehouses

— Bit map indexes and DML don't get along

Hints: Good vs Bad

* A hint can be considered good when it gives the optimizer information that helps it
make good decisions, but doesn’t force an access path. For example:

— ALL ROWS, FIRST ROWS (n)
— CARDINALITY

— (NO) REWRITE

— DRIVING SITE

— DYNAMIC SAMPLING

1\

* A hint can be considered bad when it constrains the optimizer from choosing a
possible better access path in the future. For example:
— INDEX
— FULL
— USE NL, USE HASH, USE MERGE

S i @=_ @36LOC

Commit to Engin

Generally hints should be avoided

They aren't hints really, they are directives

Using them without really knowing what you're doing can be bad
Hints are an excellent tool for testing

At times they are needed in production

The goal is to have production code with no hints

The following slides are a few hints | have found useful

lone
Page 22 of 55

I'EGLOC

MONITOR

/*+ MONITOR */
* Forces the SQL to show up in SQL Monitor
* Normally only shows up if:
— Running in Parallel
— Uses more then 5 seconds of CPU or IO
* Handy for testing, likely not necessary in production

SELECT /*+ MONITOR */ ..
FROM ..
WHERE ..

e ione
Page 23 of 55 Q

Commit to Engineering...

E6L0C

MATERIALIZE

/*+ MATERIALIZE */

e Use this for CTEs (Common Table Expressions)
e The WITH Clause

* More on this later

WITH my cte AS(
SELECT /*+ materialize */
region,
SUM (order amt) AS total orders
FROM sales
GROUP BY region)
SELECT *
FROM my cte

A @=_ @36LOC

Commit to Engineering...

NO MERGE

/*+ NO MERGE */

e Similar to the materialize hint

 Used with In Line Views (ILVs)

By default, the optimizer will try to merge ILVs into the query

select student id, last name
from (select /*+ NO MERGE */ * from student order by student id) stdnt

where (select count(*) from enrollment enrllmnt
where stdnt.student id = enrllmnt.student_id) >
(select avg(count(*)) from enrollment group by student id);

@=_ @36LOC

Commit to Engineering...

NO EXPAND

/*+ NO_EXPAND *x /
* Stops the expansion of an "OR" set of predicates ("IN" clauses too)

* If you see a long set of "identical" selects in the execution plan with OR
operations, good chance this happened

e Rarely is expanding a good idea

SELECT /*+ NO _EXPAND */ ..

FROM ...

WHERE ..

MAILING STATE in ('MI','CT','TX',6'AK',6'TN'..)

e ione
Page 26 of 55 Q

Commit to Engineering...

E6L0C

CARDINALITY

/*+ CARDINALITY (<alias,> X) */

* This forces the optimizer to use the cardinally for a given object

* Useful when the optimizer is unable to correctly calculate the cardinality
* Excellent for testing

* Can be useful with CTEs WITH Complex CTE AS

(
SELECT /*+ materialize cardinality(5000) */

)
SELECT ..
FROM Complex CTE,

/

*-;,iXQV g f
—_— @=_ 36LOC

Commit to Engin

/*+ OPT_PARAM('"OPTIMIZER INDEX COST ADJ', 10000) =*/
Likely only useful in Exadata (where Full Scans tend to be best)

e ione
Page 28 of 55 Q

Commit to Engineering...

Forces the indexes to be costed extremely high

Best for testing, not intended for production

This is placed just after the main select of a statement
Many other parameters can be used with this hint

SELECT /*+ OPT_PARAM('OPTIMIZER INDEX COST ADJ',10000) */

E6L0C

Some general tips

e Avoid REGEXP_LIKE when possible
— The LIKE function uses significantly less CPU and time
 Use OUTER joins only when absolutely necessary ‘ S

— These tend to explode the row counts @* »
* NLS and case insensitive searching &
— NLS_SORT and NLS_COMP

— Don’t use these in Exadata, predicates don’t get offloaded

Page 29 of 55 @i GLOC

Commit to Engineering...

A pet peeve of mine

DO NOT USE single character aliases

e When defining an Alias for a table or column don’t use single characters

* FROM emp master a This makes code difficult to read
* FROM emp master em This is a tiny bit better
* FROM emp master emp mstr This is better, remove vowels to shorten words

* FROM emp master emp master Thisis best, use the table/column name

* When using a table multiple times use a different Alias each time
* FROM emp master emp mstrOl
* FROM emp master emp mstr02

T i @=_ @36LOC

Commit to Engin

Common Table Expressions (CTEs)

 Time to get WITH it!

* These alone can solve an incredible amount to performance issues
 The ideais "Run once, use many"

* Oracle calls these Subquery Factors

* The industry standard name is Common Table Expressions (CTEs)

@=_ @36LOC

Commit to Engin

CTEs: some basic facts

 ACTE is defined using the WITH clause

 The WITH clause offers the benefit of reusing a query when it
occurs more than once within the same SQL.

 The WITH clause allows you to give a repeated query block an
alias and then reference it by that alias names multiple times.

* This avoids a re-read and re-execution of the query and can result
in improvement in overall execution time and resource usage.

e Typically used when querying large volumes of data.
e Can be materialized.
* These have been around for awhile, first available in v9.2.

@=_ @36LOC

Commit to Engin

Syntax of the WITH Clause TN e

select statement 1

There may be a limit on how many CTEs |-
you can define in a statement CTE_2 as (

— If you hit that limit you likely already have a

select statement 2

protﬂern {possibly referencing to CTE_1}
.)
* Alater CTE can refer to an earlier one
select ...
— Not the other way around
from
* The syntax is like a view definition CTE 1 CTEL,
— The CTE disappears once the query is CTE 2 CTE2,
finished MY TABLE MY TAB
* The WITH clause cannot be nested where

@=_ 636L0C

Commit to Engineering...

Why use CTEs: Correlated Subqueries

* Correlated subqueries are likely | operation Ob, Info M€ Bt inciine Execution: Rows
the number one performance & SHECTSATEENT 0 -
. . 4 UNION-ALL 1 1 11K
killer in SQL 4 COUNT STOPKEY ¥ 12 N— 9,794 531
. . . » NESTED LOOPS 3 1 9,794 531
* EspeC|aIIy in the SELECT list 4 SORT AGGREGATE 13 1 9,794 9,704
* One of the best uses for CTEs is ¢ NESTEDLOOPS = - o =
) 4 SORT AGGREGATE 31 1 9,704 9,704
to get rid of correlated b NESTED LOOPS 2 1 9,794 34K
. 4 SORT AGGREGATE 49 1 9,794 9,704
SquuerleS b NESTED LOOPS 50 1 9,794 263
e Note in the examp|e the 4 SORT AGGREGATE 67 1 9,794 9,794
) b NESTED LOOPS 68 1 9,794 1193
executions column 4 SORT AGGREGATE 85 1 9,794 9,794
b NESTED LOOPS 86 1 9,794 62K
* Query went from over 10 4 SORT AGGREGATE 102 1 9,794 9,704

minutes to 33 seconds using 4 NESTED LOOPS 103 1 9,794

S @ iGLOG

Commit to Engineering...

Page 35 of 55

SELECT
dname,
lac;
(SELECT COUNT (empno)
WHERE emp.deptno =
FROM

dept
ORDER BY

dname;

FROM emp

WITH empcnt cte AS(
SELECT /*+

materialize */

deptno, COUNT (empno)emp cnt FROM emp
GROUP BY deptno)
SELECT
dname, loc, nvl(emp cnt,0) emp cnt
FROM

dept, empcnt cte
WHERE dept.deptno =
ORDER BY dname;

empcnt cte.deptno (+)

dept.deptno)emp cnt

€= s 2 SUBQUERY

« As a CTE

@=_ @36LOC

Commit to Engineering...

Why use CTEs: Correlated Subqueries an Example

The result set for both statements

[> Query Result x
a .E, @ﬂ a SQL | AllRows Fetched: 4in 0.053 seconds

{; DNAME {tLoc {s EMP_CNT

1 ACCOUNTING NEW YORK 5

e 2 OPERATIONS BOSTON 0
3 RESEARCH DALLAS 5

4 SALES CHICAGO 4

e ione
Page 36 of 55 Q_

Commit to Engineering...

E6L0C

Why use a CTE: Correlated Subqueries Example

OPERATION OBJECT_NAME OPTIONS LAST_STARTS
=@ SELECT STATEMENT 1
=4 SORT AGGREGATE -

E).“D[f”g):mcess Predicates ' = : « AS a S U BQU E RY

EMP.DEPTNO=:B1

@Q SORT ORDER BY 1

- B TABLE ACCESS DEPT STORAGE FULL 1
OPERATION OBJECT_NAME OPTIONS LAST_STARTS ¢
= @ SELECT STATEMENT 1
- TEMP TABLE TRANSFORMATION 1
- @ LOAD AS SELECT SYS_TEMP_1FDADDAQG_2ADSF375 (CURSOR DURATION MEMORY) 1
. =@ HASH GROUP BY 1
g .[BH] TABLE ACCESS EMP. STORAGE FULL 1

=4 SORT ORDER BY 1 « AS d CTE

=P HASH JOIN OUTER 1

2Ot Access Predicates
. i.. DEPT.DEPTNO=EMPCNT_CTE.DEPTNO

@TABLE ACCESS DEPT STORAGE FULL 1
=B view 1
I @ TABLE ACCESS SYS.SYS_TEMP_1FDADDAOS_2ADSF375 STORAGE FULL 1
Output above is SQL Developer Autotrace. r
Page 37 of 55 Using these tiny tables the time was really the same, @.05 seconds. @m Iﬂ GLUB

The savings will happen as the DEPT table (in this case) grows. Commit o Engineering... . ujios Oracle Conforence

Why use CTEs: Repeated Subqueries

* |tis not uncommon that in large SQL statements (hundreds of lines) to
have the same subquery repeated

* Often happens when there are multiple UNION statements

* It might be identical each time or slight variations

* Replace these with one CTE to get the "super set"

* Then from the CTE, select what you need each time

* Now you will hit the database once for the data and use it over and over

@=_ @36LOC

Commit to Engin

Why use CTEs: Transforming data

* Another good use is to transform the data thru a set of CTEs

* This allows you to "massage" the data to get it into a form desired

* Likely easier to see and understand when done as a set of steps thru CTEs
* This makes debugging and maintenance easier

e This can run faster then if it was done "all at once" in a single query

e ione
Page 39 of 55 Q

Commit to Engineering...

Why use CTEs: Recursive CTEs

* With recursive CTEs you have an alternative for hierarchical queries
e This is an alternative to the classic "START WITH .. CONNECT BY

e There is an ANCHOR member and a RECURSIVE member in the
statement

e These two members are connected with a UNION ALL
* You can easily follow by DEPTH or WIDTH first

e ione
Page 40 of 55 Q

Commit to Engineering...

Why use a CTE: Recursive CTEs an Example

WITH
org chart (eid, emp last, mgr_id, reportLevel) AS

(

SELECT empno, ename, mgr,l reportLevel

FROM emp
WHERE job='PRESIDENT' ANCHOR member
UNION ALL
SELECT e.empno, e.ename, e.mgr,
reportLevel+l
FROM org_chart r, emp e RECURSIVE member

WHERE r.eid = e.mgr
)

SEARCH DEPTH FIRST BY eid SET orderl k
SELECT lpad(' ', 2*reportLevel) ||eid emp no, emp last
FROM org chart
ORDER BY orderl

/ SEARCH BREADTH FIRST BY eid SET orderl

©=_ @6L0C

Commit to Engineering...

Why use CTEs: Recursive CTEs an Example

kkhkkhkkkkkkhkhkkhkkkkhkhkkhkkkkx

k*kk*xxx* DEPTH FIRST
khkkkkkkkkkhhkkkrkhkkkkkk

EMP_LAST

BLAKE
ALLEN
WARD
MARTIN
TURNER
JAMES
CLARK
MILLER

hkkhkkhkhkkkkhkhkkkkhkkhkkkkhkkhkkkx*x

%*k*kxx* BREADTH FIRST
hhkhkkkkhkhkkkhhkhkkkkkkkkkkhk

EMP_LAST

WARD
MARTIN
SCOTT
TURNER
JAMES
FORD
MILLER
SMITH
ADAMS

BREADTH
is the
default

Page 42 of 55

@

Commit to Engineering...

Why use CTEs: WITH Functions

Allows you to define a FUNTION in a CTE structure
— You can define PROCEDURES too, but that seems highly unusual to do
The Optimizer will In Line the function if it can automatically
— This can run much faster then calling to a standalone function
This is best for something that is a "one-off"
— There already exists a function that does almost what you need
— You can replicate the function in the CTE with the change(s) you need
— So long as this is the only place used it can be a good idea
Even if you never use this functionality, it's super cool that you could ©

©=_ @6L0C

Commit to Engineering...

Why use CTEs: WITH Functions an Example

SQL> get with fun
1 (with function rtn date convert2 (p_unix gmt in number)

2 return date

3 as

4 v_date date;

5 begin

6

7

8

v_date := to _date('01/01/1970', 'mm/dd/yyyy') + (p_unix gmt/86400) ;
RETURN v_date;
end ;
9 select count(*) from ord2
10* where rtn date_ convert2 (gmt_order date) > sysdate - 7000
SQL>

e Done as a WITH function this ran about half the time as a standalone function
 This function takes a NUMBER and converts it to a DATE

* The number is assumed to be the number for seconds since the Unix epoch
— 86,400 is the number of seconds in one day (24 hours)

©=_ @6L0C

Commit to Engineering...

CTEs: Some Recommendations

Keep the number of them down
Less than 10 would be ideal
Keep the row count down per CTE

A million or less rows returned is great

* These aren't about "limits", they are about conserving memory
— Materialized CTEs take up memory (PGA)

e |fasetof 16 CTEs or a 500 million row CTE has significate performance
improvement, doing so may well be worth it

©=_ @6L0C

Commit to Engineering...

A little about Exadata

 [t's all about the Smart scan

« Smart scan is when the storage cell performs a scan

« Data blocks are scanned at the storage level

* Only qualifying blocks are returned to the database server

« Some predicates may not be applied at the storage level

» Only filter predicates can be applied

« Some join filter can be done as well with the use of bloom filters
« Storage indexes are used (if available, created automatically)

« Also referred to as "Offloading"

» Generally only happens for full scan actions (full table or index fast full)

@=_ @36LOC

Commit to Engin

Page 47 of 55

0
SELECT
custnmar_nama
FROM calls
WHERE amount >
200;

l

a
Smart Scan
Constructed And
Sent To Cells

4

5]

Smart Scan
identifies rows and
columns within
terabyte table that
match request

®
Rows Returned

1

L5
Consolidated
Result Set
Built From All
Cells

LI

Q
2MB of data
returned to server

A simple example
of a smart scan

This diagram is from
Exadata System Software
User's Guide chapter 1
Introducing Oracle Exadata
System Software.

@=_ @36LOC

Commit to Engineering...

Smart Scans

e Smart scans are fast — when they happen
* This operation scanned 377,877,940 rows in 8 seconds.
— About 47 million rows a second

Operation MName Line ID | Estimated R... |Actual Rows | Timeline(... | Activ...
ﬂfr - FX BLOCK ITERATOR 44 462M 378M
f]"j TABLE ACCESS STORAGE FULL 2_AP C 45 462M 37EM | .38

 But when it doesn't, rats!
e This operation scanned 4,513,812 rows in 142 seconds.
 About 31 thousand rows a second

Operation | Na... | Line ID | Estimate... | Actu... | Timeline{340s) | Activity % |
i =1 PX BLOCK ITERATOR 23 431M 4,514 S
i) TABLE ACCESS STORAGE FULL 1_PAT 30 431M 4 51qy e——

@ iGLOC

Commit to Engineering...

Smart Scans: Can we control when it happens?

Worksheet Query Builder

1EFELECT DISTINCT
* Not really but we can influence it's 2 name, datatype, offloadable
- 3 FROM v$sqglfn metadata
possibility 4| WHERE offloadable = 'YES'
— Doing a smart scan is a run time 3| i OBOER.BE mameas
decision B> Query Result x
& B @) B soL | AlRows Fetched: 394in 0.465 seconds
— If the nodes are too busy they e e e
wouldn't even if they could L= UNKNOWN YES
2 < UNKNOWN YES
* Your predicates can influence if it can 3<= UNKNOWN YES
1= UNKNOWN YES
even be done 5> UNKNOWN YES
. . 6 >= UNKNOWN YES
— Generally the simpler the predicate, 7 ABS NUMERIC YES
. . . 8 ACOS NUMERIC YES
the more likely it will happen TD e R e
s , 10 ADJ DATE UNKNOWN YES
— In 21c, 394 distinct operations are nRECTT NUMERIC YES

s @=_ 36LOC

Commit to Engineering...

Smart Scans

Plan Statistics Parallel | |~ Activity | [F] Metrics

Plan Hash Value BE [Plan Note
Operation | Object | Line ID | Predicate Pruning
* Predicates a nd - PX SEND HYBRID HASH :TQ10000 36
. B STATISTICS COLLECTOR 37
cell offloadin
g I PX BLOCK ITERATOR 38 1.3
TABLE ACCESS STORAGE FULL 2_PAT_ED 39 N 1.3
TABLE ACCESS STORAGE FULL x

d It'S the FILTER Sub-tree Cost 4,505 (.36% CPU)

Operation Cost 4,506 (.36% CPU)

version of the Sub-tree Time <15
. Rows 840K
predicate that Bytes 41
Object 2_PAT_ENC_HSP
Ca n be Offl Oa d ed \Access Predicates :Z>=:Z AND :Z==:Z AND {"ED_EPISODE_ID" IS5 NOT MULL AND "ADT_PA'I'IENT_STAT_C"=3 AND (II"ITE

Filter Predicates ("ED_EPISODE_ID™ IS NOT MULL AND "ADT_PATIENT_STAT_C"=3 AND (INTERNAL_FUNCTION("ADMIT
Partition Start 1
Partition Stop 3
Query Block Name/Object Alias SEL$B727AT76/2_PAT_ENC_HSP@SEL:1T

|4i [[+]

| @==_ @36L0C

Commit to Engineering...

Indexes with Exadata

* What about indexes?
* Using indexes to get a small amount of data is still a good idea
* These scans took less then 3 seconds to complete

Operation | Mame | Line ID | Estimat... ‘ Actual Rows | Activity % | Timeline{233s)
ﬁ‘j} [E- TABLE ACCESS BY INDEX ROWID CLARITY 208 2 115 :
ﬂﬁ INDEX UNIQUE SCAN PE._CLAF 209 1 115 I
ﬁ,‘j} El- TABLE ACCESS BY INDEX ROWID CLARITY 210 1 112 :
ﬂ:ﬁ INDEX UNIQUE SCAN PE._CLAF 211 1 112 I

@=_ @36LOC

Commit to Engineering...

Indexes with Exadata

QOperation | MName | Line ID | Estimat... ‘ Actual Rows | Activity 3% Timeline{813s) Exacutions
%Eb - PX RECEIVE 29 61K 488K 16
ﬂf}l:b [PX SEND HYBRID HASH sTQa0oc 25 61K 502K | .04 16
ﬂj‘jl:f) = NESTED LOOPS OUTER 26 61K 502K |.Dl 16
ﬂj}w - NESTED LOOPS OUTER 27 GOK 502K | .01 16
ﬁl:t) [E- NESTED LOOPS OUTER 2B BOK 471K | .02 16
ﬂjj:; HASH JOIN 25 GOK 471K | .21 16
ﬂj}@ [E-TAELE ACCESS BY INDEX ROWL.. ED_IEV_ 48 1 15K _E? 471K
ﬂj}l:b INDEX RANGE SCAN ELX_EDI 45 5 4,773k M 10 471K
ﬂf}:& [E TABLE ACCESS BY INDEX ROWID ... ED_IEV_ 50 1 114K W .92 471K
ﬂjl:b INDEX RANGE SCAN ELX_EDI 51 5 4, 778K | .09 471K
ﬂj}w - TABLE ACCESS BY INDEX ROWID B... ED_IEV_ 52 1 123K | .13 502K
ﬁl:t) INDEX RANGE SCAN EIX_EDI 53 5 5,671K | .03 502K

I * This is the kind of thing that can go very wrong with indexes

These green arrows

means jtwas running | e Indexes can drive stacks of NESTED LOOPS joins
when the screen shot
was taken! * These can be very inefficient

page 52 0f 55 No benefit from cell offloading Q - GLUB

Commit to Engineering...

Indexes and Exadata

* Helping the Optimizer not use an index
* Two techniques | like:
— COALESCE (NVL doesn’t always work)
— In Line Views (ILV), need the NO_MERGE hint

e Of course you could use the FULL hint, make the index INVISIBLE
or DROP the index as well

COALESCE (my tab.id,-99999) = other tab.id

LEFT JOIN (select /*+ no merge */
id, name, status from my tab) my tab

ON my tab.id = other tab.id

)) @=_ 3G6LOC

Commit to Engin

Zione Solutions

Zione Solutions, LLC.
37000 Grand River Avenue,
STE 355

Farmington Hills, MI 48335

CEN

Commit to Engineering...

Phone: (248)-442-7404
Email : contact@zionesolutions.com
Site : www.zionesolutions.com

— @=_ D6L0C

Commit to Engin

about:blank
about:blank

Questions and Answers

CEN

Commit to Engineering...

Ric Van Dyke
Sr. DBA
Oracle Ace

rvandyke@zionesolutions.com

@=_ @36LOC

Commit to Engin.

