
MAY 10 – 14, 2021

WWW.NEOOUG.ORG/GLOC

Leaping Tall Buildings with SQL
Ric Van Dyke

Sr. DBA, Zione Solutions
Oracle Ace

Outline

❑Core optimization Guidelines

➢Explain plan vs Execution plan

❑Getting the plan

➢Reading the plan

❑Indexes

➢HINTs

❑Common Table Expressions (CTEs)

➢Exadata
Page 2 of 55

Who is Ric?

• Oracle Ace

• Using Oracle since version 5

• Currently Sr. DBA at Zione Solutions

• Prior experience:

– Started way back at Ford Motor Credit

• Developer in Forms 2.3

• DBA (Versions 5, 6, and 7)

– Worked for Oracle for 10 years

• Core DBA Senior Principal instructor

• Education Manger, central region

• ATS Technical Manger, north central region

– Director of Education at Hotsos
Page 3 of 55

SQL Optimization Guidelines

• Let the numbers lead you to where the problem is.

• The goal for query optimization is to reduce the time
it takes for a query to finish.

• What helps one query may not help (and even hurt)
another query.

• Never assume anything. Without run time stats you
are just guessing as to what a problem might be.

• Make sure the query is doing only what it needs to do
for the business question being asked.

Page 4 of 55

Basics of SQL Optimization

• Finding why a SQL statement is slow can be easy.

– Find the section of the plan taking up the most time.

• Fixing the issue may not be so easy.

– Make that section "go away" (Don't do it).

– Find a way to do that faster.

• Other times a rewrite is needed.

– Tune the question, not the query.

– The plan might look "OK", but is it doing more then it needs to?

– You always know something the optimizer doesn't.

Page 5 of 55

The Plan

• It's all about the plan, the execution plan.

• The explain plan is a "guess".

• The execution plan is what really happened.

• To optimize SQL you need the execution

plan with stats.

• With this you know where the problem is.

Page 6 of 55

Finding what is slow

• Use SQL Monitor

– Best way to see the execution plan

– All the details you need

– Requires the Diagnostics and Tuning packs

• Use DBMS_XPLAN.DISPLAY_CURSOR

– Works quite well

– Gives you the core details you need

– No required packs to use

Page 7 of 55

SQL Monitor

• Use the plan statistic tab to lead you to the problem

• These are the columns most useful to lead you to an issue

• Do not use COST as a tuning metric

OEM:

SQL Developer:

Page 8 of 55

Columns of interest

• OPERATION – What happened

• NAME – Who it happened to

• LINE ID – Line in the plan, has nothing to do with the statement lines

• ESTIMATED/PLAN ROWS – How many rows were guessed to come back

• ACTUAL ROWS – How many rows really did come back

• ACTIVITY % – How much of the over all active did this step account for

• TIMELINE – Time this step was active

• EXECUTIONS – How many times did this step fire off

Page 9 of 55

SQL Developer – SQL Monitor

SILLY.SQL

This query was run on a 21c Autonomous Cloud Database, the tables are small.
It took about 4 seconds of run time over all, the database time was 55ms.

Clearly not much to work on for this query on this machine.
Page 10 of 55

SQL Developer – SQL Monitor

• From this screen, use the predicates to map steps back to the SQL Statement.

• Since was run on an Exadata machine, notice that many of the predicates are both
ACCESS and FILTER. More on this later.

Page 11 of 55

DBMS_XPLAN.DISPLAY_CURSOR

• It is a "manual" thing

• To get actuate timing information either:

• Use /*+ gather_plan_statistics*/

• Set statistics_level to ALL (session or system)

• Generally best to let the SQL run to completion then get the plan

• Doesn't show parallel plans very well

• DBMS_XPLAN can be use several ways, this is just one

• Note: SQL Developer has this functionality via Autotrace

Page 12 of 55

DBMS_XPLAN: A simple example

SQL> SELECT PLAN_TABLE_OUTPUT

2 FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR

3 ('3431u08q6anmy',0,'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

--

SQL_ID 3431u08q6anmy, child number 0

SELECT ename FROM emp

Plan hash value: 3956160932

--

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

--

| 0 | SELECT STATEMENT | | 1 | | 14 |00:00:00.01 | 8 |

| 1 | TABLE ACCESS FULL| EMP | 1 | 14 | 14 |00:00:00.01 | 8 |

--

Page 13 of 55

DBMS_XPLAN: You will need to do some math

• These columns are not cumulative:

• Starts, A-Rows, E-Rows

• These columns are cumulative:

• A-Time, Buffers (LIOs), Reads (PIOs)

• For cumulative columns the value includes the
direct children

Page 14 of 55

Doing the math

• The A-Time for the HASH JOIN step is .29 (91 - 61 - 1 = 29)

• The Buffers (LIOs) for the HASH JOIN step is 0 (49,818 - 49,812 - 6 = 0)

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 16000 |00:00:00.91 | 49818 |

|* 1 | HASH JOIN | | 1 | 15769 | 16000 |00:00:00.91 | 49818 |

| 2 | INDEX FAST FULL SCAN| THIS_IDX | 1 | 500 | 500 |00:00:00.01 | 6 |

| 3 | TABLE ACCESS FULL | THAT_TAB | 1 | 2898K| 2898K|00:00:00.61 | 49812 |

Page 15 of 55

Now what?

• This execution plan has over
600 lines

• Look for lines with:

– High activity

– Long time consumption

• Attack those lines

– Map back to the query

– Use the predicates

• Is the step necessary?

• Is there another way to do
that?
Page 16 of 55

Reading the Plan

• The order of execution and of completion are not the same

• The plan executes from top down, but completes "inside out"

• A parent step starts first but can't complete until it's children do

• This plan completes in this ID order: 2, 4, 5, 3, 1, 0

Page 17 of 55

What to look for in a plan

• Look for big time consumers

– This step or set of steps will be your main focus

– It might not be "this" step that is the source of the problem

• Watch the cardinality (estimated vs actual rows)

– Fix where it goes wrong

– Over or under estimates can cause a plan to go rouge

– Generally speaking, everything after that step is questionable

• Observe the execution counts

– A set of lines that execute over and over is likely a problem

– Note: the inner part of a NESTED LOOPS and a SORT MERGE join always
executes multiple times.

Page 18 of 55

Index scans

• This is an alternative to a full table scan

• An index returns the ROWID for a given row

• With the ROWID the optimizer can go directly to the block
containing the row

• This is quite fast when retrieving a relatively small amount of rows
from a table

– There really isn't a fixed amount or precent when this is
"always" best

• An index can be scanned without going to the table

– Called a "fat" or "covering" indexes
Page 19 of 55

Indexes

• For the normal B-Tree index best to have a multi-column index

– When using a B-Tree index you will only get to use one per table

– Find an index with a set of commonly used columns

– Ideally create one multi-column index to support many queries

• For Bit Map indexes typically better to have several single column indexes

– The optimizer can put these together in using either an AND or OR
operation

– This gives flexibility in data warehouses

– Bit map indexes and DML don't get along

Page 20 of 55

Hints: Good vs Bad

• A hint can be considered good when it gives the optimizer information that helps it
make good decisions, but doesn’t force an access path. For example:

– ALL_ROWS, FIRST_ROWS(n)

– CARDINALITY

– (NO)REWRITE

– DRIVING_SITE

– DYNAMIC_SAMPLING

• A hint can be considered bad when it constrains the optimizer from choosing a
possible better access path in the future. For example:

– INDEX

– FULL

– USE_NL, USE_HASH, USE_MERGE

Page 21 of 55

Hints

• Generally hints should be avoided

• They aren't hints really, they are directives

• Using them without really knowing what you're doing can be bad

• Hints are an excellent tool for testing

• At times they are needed in production

• The goal is to have production code with no hints

• The following slides are a few hints I have found useful

Page 22 of 55

MONITOR

/*+ MONITOR */

• Forces the SQL to show up in SQL Monitor

• Normally only shows up if:

– Running in Parallel

– Uses more then 5 seconds of CPU or IO

• Handy for testing, likely not necessary in production

SELECT /*+ MONITOR */ …

FROM …

WHERE …

/
Page 23 of 55

MATERIALIZE

/*+ MATERIALIZE */

• Use this for CTEs (Common Table Expressions)

• The WITH Clause

• More on this later

WITH my_cte AS(

SELECT /*+ materialize */

region,

SUM(order_amt) AS total_orders

FROM sales

GROUP BY region)

SELECT *

FROM my_cte

/
Page 24 of 55

NO_MERGE

/*+ NO_MERGE */

• Similar to the materialize hint

• Used with In Line Views (ILVs)

• By default, the optimizer will try to merge ILVs into the query

select student_id, last_name

from (select /*+ NO_MERGE */ * from student order by student_id) stdnt

where (select count(*) from enrollment enrllmnt

where stdnt.student_id = enrllmnt.student_id) >

(select avg(count(*)) from enrollment group by student_id);

Page 25 of 55

NO_EXPAND

/*+ NO_EXPAND */

• Stops the expansion of an "OR" set of predicates ("IN" clauses too)

• If you see a long set of "identical" selects in the execution plan with OR
operations, good chance this happened

• Rarely is expanding a good idea

SELECT /*+ NO_EXPAND */ …

FROM …

WHERE …

MAILING_STATE in ('MI','CT','TX','AK','TN'…)

…

/

Page 26 of 55

CARDINALITY

/*+ CARDINALITY(<alias,> X) */

• This forces the optimizer to use the cardinally for a given object

• Useful when the optimizer is unable to correctly calculate the cardinality

• Excellent for testing

• Can be useful with CTEs
WITH Complex_CTE AS

(

SELECT /*+ materialize cardinality(5000) */

…

)

SELECT …

FROM Complex_CTE, …

/

Page 27 of 55

OPT_PARAM

/*+ OPT_PARAM('OPTIMIZER_INDEX_COST_ADJ',10000) */

• Likely only useful in Exadata (where Full Scans tend to be best)

• Forces the indexes to be costed extremely high

• Best for testing, not intended for production

• This is placed just after the main select of a statement

• Many other parameters can be used with this hint

SELECT /*+ OPT_PARAM('OPTIMIZER_INDEX_COST_ADJ',10000) */

…

/

Page 28 of 55

Some general tips

• Avoid REGEXP_LIKE when possible

– The LIKE function uses significantly less CPU and time

• Use OUTER joins only when absolutely necessary

– These tend to explode the row counts

• NLS and case insensitive searching

– NLS_SORT and NLS_COMP

– Don’t use these in Exadata, predicates don’t get offloaded

Page 29 of 55

A pet peeve of mine

DO NOT USE single character aliases

• When defining an Alias for a table or column don’t use single characters
• FROM emp_master a This makes code difficult to read

• FROM emp_master em This is a tiny bit better

• FROM emp_master emp_mstr This is better, remove vowels to shorten words

• FROM emp_master emp_master This is best, use the table/column name

• When using a table multiple times use a different Alias each time
• FROM emp_master emp_mstr01

• FROM emp_master emp_mstr02

Page 30 of 55

Common Table Expressions (CTEs)

• Time to get WITH it!

• These alone can solve an incredible amount to performance issues

• The idea is "Run once, use many"

• Oracle calls these Subquery Factors

• The industry standard name is Common Table Expressions (CTEs)

Page 31 of 55

CTEs: some basic facts

• A CTE is defined using the WITH clause

• The WITH clause offers the benefit of reusing a query when it
occurs more than once within the same SQL.

• The WITH clause allows you to give a repeated query block an
alias and then reference it by that alias names multiple times.

• This avoids a re-read and re-execution of the query and can result
in improvement in overall execution time and resource usage.

• Typically used when querying large volumes of data.

• Can be materialized.

• These have been around for awhile, first available in v9.2.

Page 32 of 55

Syntax of the WITH Clause

• There may be a limit on how many CTEs
you can define in a statement

– If you hit that limit you likely already have a
problem

• A later CTE can refer to an earlier one

– Not the other way around

• The syntax is like a view definition

– The CTE disappears once the query is
finished

• The WITH clause cannot be nested

with CTE_1 as (

select statement 1

),

CTE_2 as (

select statement 2

{possibly referencing to CTE_1}

)

select ...

from

CTE_1 CTE1,

CTE_2 CTE2,

MY_TABLE MY_TAB

where ...

Page 33 of 55

Why use CTEs: Correlated Subqueries

• Correlated subqueries are likely
the number one performance
killer in SQL

• Especially in the SELECT list

• One of the best uses for CTEs is
to get rid of correlated
subqueries

• Note in the example the
executions column

• Query went from over 10
minutes to 33 seconds using
CTEs

Page 34 of 55

Why use CTEs: Correlated Subqueries an Example

As a CTE

As a SUBQUERY

Page 35 of 55

Why use CTEs: Correlated Subqueries an Example

The result set for both statements

Page 36 of 55

Why use a CTE: Correlated Subqueries Example

As a SUBQUERY

As a CTE

Output above is SQL Developer Autotrace.
Using these tiny tables the time was really the same, @.05 seconds.

The savings will happen as the DEPT table (in this case) grows.
Page 37 of 55

Why use CTEs: Repeated Subqueries

• It is not uncommon that in large SQL statements (hundreds of lines) to
have the same subquery repeated

• Often happens when there are multiple UNION statements

• It might be identical each time or slight variations

• Replace these with one CTE to get the "super set"

• Then from the CTE, select what you need each time

• Now you will hit the database once for the data and use it over and over

Page 38 of 55

Why use CTEs: Transforming data

• Another good use is to transform the data thru a set of CTEs

• This allows you to "massage" the data to get it into a form desired

• Likely easier to see and understand when done as a set of steps thru CTEs

• This makes debugging and maintenance easier

• This can run faster then if it was done "all at once" in a single query

Page 39 of 55

Why use CTEs: Recursive CTEs

• With recursive CTEs you have an alternative for hierarchical queries

• This is an alternative to the classic "START WITH .. CONNECT BY
.."

• There is an ANCHOR member and a RECURSIVE member in the
statement

• These two members are connected with a UNION ALL

• You can easily follow by DEPTH or WIDTH first

Page 40 of 55

Why use a CTE: Recursive CTEs an Example
WITH

org_chart (eid, emp_last, mgr_id, reportLevel) AS

(

SELECT empno, ename, mgr,1 reportLevel

FROM emp

WHERE job='PRESIDENT'

UNION ALL

SELECT e.empno, e.ename, e.mgr,

reportLevel+1

FROM org_chart r, emp e

WHERE r.eid = e.mgr

)

SEARCH DEPTH FIRST BY eid SET order1

SELECT lpad(' ',2*reportLevel)||eid emp_no, emp_last

FROM org_chart

ORDER BY order1

/ SEARCH BREADTH FIRST BY eid SET order1

ANCHOR member

RECURSIVE member

Page 41 of 55

Why use CTEs: Recursive CTEs an Example

********* DEPTH FIRST

EMP_NO EMP_LAST

-------------------- --------

7839 KING

7566 JONES

7788 SCOTT

7876 ADAMS

7902 FORD

7369 SMITH

7698 BLAKE

7499 ALLEN

7521 WARD

7654 MARTIN

7844 TURNER

7900 JAMES

7782 CLARK

7934 MILLER

********* BREADTH FIRST

EMP_NO EMP_LAST

-------------------- --------

7839 KING

7566 JONES

7698 BLAKE

7782 CLARK

7499 ALLEN

7521 WARD

7654 MARTIN

7788 SCOTT

7844 TURNER

7900 JAMES

7902 FORD

7934 MILLER

7369 SMITH

7876 ADAMS

BREADTH

is the
default

Page 42 of 55

Why use CTEs: WITH Functions

• Allows you to define a FUNTION in a CTE structure

– You can define PROCEDURES too, but that seems highly unusual to do

• The Optimizer will In Line the function if it can automatically

– This can run much faster then calling to a standalone function

• This is best for something that is a "one-off"

– There already exists a function that does almost what you need

– You can replicate the function in the CTE with the change(s) you need

– So long as this is the only place used it can be a good idea

• Even if you never use this functionality, it's super cool that you could ☺

Page 43 of 55

Why use CTEs: WITH Functions an Example

• Done as a WITH function this ran about half the time as a standalone function

• This function takes a NUMBER and converts it to a DATE

• The number is assumed to be the number for seconds since the Unix epoch
– 86,400 is the number of seconds in one day (24 hours)

SQL> get with_fun

1 with function rtn_date_convert2 (p_unix_gmt in number)

2 return date

3 as

4 v_date date;

5 begin

6 v_date := to_date('01/01/1970','mm/dd/yyyy') + (p_unix_gmt/86400);

7 RETURN v_date;

8 end ;

9 select count(*) from ord2

10* where rtn_date_convert2(gmt_order_date) > sysdate - 7000

SQL>

Page 44 of 55

CTEs: Some Recommendations

Keep the number of them down

Less than 10 would be ideal

Keep the row count down per CTE

A million or less rows returned is great

• These aren't about "limits", they are about conserving memory

– Materialized CTEs take up memory (PGA)

• If a set of 16 CTEs or a 500 million row CTE has significate performance
improvement, doing so may well be worth it

Page 45 of 55

A little about Exadata

• It's all about the Smart scan

• Smart scan is when the storage cell performs a scan

• Data blocks are scanned at the storage level

• Only qualifying blocks are returned to the database server

• Some predicates may not be applied at the storage level

• Only filter predicates can be applied

• Some join filter can be done as well with the use of bloom filters

• Storage indexes are used (if available, created automatically)

• Also referred to as "Offloading"

• Generally only happens for full scan actions (full table or index fast full)

Page 46 of 55

Smart
Scan

A simple example
of a smart scan

This diagram is from
Exadata System Software

User's Guide chapter 1
Introducing Oracle Exadata

System Software.

Page 47 of 55

Smart Scans

• Smart scans are fast – when they happen

• This operation scanned 377,877,940 rows in 8 seconds.

– About 47 million rows a second

• But when it doesn't, rats!

• This operation scanned 4,513,812 rows in 142 seconds.

• About 31 thousand rows a second

Page 48 of 55

Smart Scans: Can we control when it happens?

• Not really but we can influence it's
possibility

– Doing a smart scan is a run time
decision

– If the nodes are too busy they
wouldn't even if they could

• Your predicates can influence if it can
even be done

– Generally the simpler the predicate,
the more likely it will happen

– In 21c, 394 distinct operations are
offlaodable

Page 49 of 55

Smart Scans

• Predicates and
cell offloading

• It's the FILTER
version of the
predicate that
can be offloaded

Page 50 of 55

Indexes with Exadata

• What about indexes?

• Using indexes to get a small amount of data is still a good idea

• These scans took less then 3 seconds to complete

Page 51 of 55

Indexes with Exadata

• This is the kind of thing that can go very wrong with indexes

• Indexes can drive stacks of NESTED LOOPS joins

• These can be very inefficient

• No benefit from cell offloading Page 52 of 55

These green arrows
means it was running
when the screen shot
was taken!

Indexes and Exadata

• Helping the Optimizer not use an index

• Two techniques I like:

– COALESCE (NVL doesn’t always work)

– In Line Views (ILV), need the NO_MERGE hint

• Of course you could use the FULL hint, make the index INVISIBLE
or DROP the index as well

COALESCE(my_tab.id,-99999) = other_tab.id

LEFT JOIN (select /*+ no_merge */

id, name, status from my_tab) my_tab

ON my_tab.id = other_tab.id

Page 53 of 55

Zione Solutions

Leading System Integrator & IT Service Provider

Strong Big Data & Business Intelligence Expertise

Highly Skilled Pool of Resources

Oracle Service Partner

Cloud & Managed Services

Experience Delivering “Industry Best Practices”

Agile Scrum-Based Application Life Cycle Management

Zione Solutions, LLC.
37000 Grand River Avenue,
STE 355
Farmington Hills, MI 48335

Phone: (248)-442-7404
Email : contact@zionesolutions.com
Site : www.zionesolutions.com

Page 54 of 55

about:blank
about:blank

Questions and Answers

Ric Van Dyke

Sr. DBA

Oracle Ace

rvandyke@zionesolutions.com

Page 55 of 55

